本文提供的所有语言版本: 简中 EN
个人简介
关于我
我是李盛洲,目前我正在筑波大学攻读计算机博士学位。我的导师是NIMS的中田彩子研究员和筑波大学的樱井铁也教授,我的主要研究方向是《基于数据驱动和机器学习的材料科学研究》。
研究兴趣
教育经历
- 上海大学(中国),计算机工程与科学学院,工学学士(2012年9月~2016年6月)
- 上海大学(中国),计算机工程与科学学院,工学硕士(2016年9月~2019年4月)
- 东北师范大学(中国),留日预备学校,日语学习(2019年10月~2020年8月)
- 筑波大学(日本),情报工学部(计算机科学),博士在读(2020年10月~至今)(文部科学省奖学金)
论文发表
- (Cover Paper) S Li, T Miyazaki, A Nakata. Theoretical search for characteristic atoms in supported gold nanoparticles: a large-scale DFT study[J]. Physical Chemistry Chemical Physics, 2024, 26: 20251-20260 [DOI]
- S Li, A Nakata. CSIML: a cost-sensitive and iterative machine-learning method for small and imbalanced materials data sets[J]. Chemistry Letters, 2024, 53(5).[DOI]
- S Li, H Zhang, D Dai, G Ding, X Wei, Y Guo. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning[J]. Journal of Alloys and Compounds, 2019, 782: 110-118.[DOI]
- D Dai, G Zhang, X Wei, Y Lin, M Dai, J Peng, N Song, Z Tang, S Li, J Liu, Y Xu, R Che, H Zhang. A GPT-assisted iterative method for extracting domain knowledge from a large volume of literature of electromagnetic wave absorbing materials with limited manually annotated data[J]. Computational Materials Science, 2025, 246: 113431.[DOI]
- Wei X, Zhang Y, Liu X, J Peng, S Li, R Che, H Zhang. A domain knowledge enhanced machine learning method to predict the properties of halide double perovskite \(A_2B^+B^{3+}X_6\) [J]. Journal of Materials Chemistry A, 2023.[DOI]
- H Zhang, X Liu, G Zhang, Y Zhu, S Li, Q Qian, D Dai, R Che, T Xu, Deriving equation from data via knowledge discovery and machine learning: A study of Young’s modulus of Ti-Nb alloys[J]. Computational Materials Science, 2023, 228:112349.[DOI]
- H Zhang, R Hu, X Liu, S Li, G Zhang, Q Qian, G Ding, D Dai. An end-to-end machine learning framework exploring phase formation for high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2022, [DOI]
- W Zheng , H Zhang, H Hu, Y Liu, S Li, G Ding, J Zhang. Performance prediction of perovskite materials based on different machine learning algorithms[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(04): 803-809.[DOI](中文)
- Y Liu, H Zhang, Y Xu, S Li, D Dai, C Li, G Ding, W Shen, Q Qian. Prediction of Superconducting Transition Temperature Using A Machine-Learning Method[J]. Materiali in tehnologije, 2018, 52(5): 639-643.[DOI]
- H Zhang, G Zhou, S Li, X Fan, Z Guo, T Xu, Y Xu, X Chen, D Dai, Q Qian. Application of fuzzy learning in the research of binary alloys: Revisit and validation[J]. Computational Materials Science, 2020, 172: 109350.[DOI]
- D Dai, T Xu, H Hu, Z Guo, Q Liu, S Li, Q Qian, Y Xu, H Zhang. A New Method to Characterize Limited Material Datasets of High-Entropy Alloys Based on the Feature Engineering and Machine Learning[J]. Available at SSRN 3442010.[DOI]
联系我
邮箱:zhonger[at]live.cn (请使用@替换[at])